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ABSTRACT

Turbidite bed thickness distributions are often interpreted in terms of power
laws, even when there are significant departures from a single straight line on
a log—log exceedence probability plot. Alternatively, these distributions have
been described by a lognormal mixture model. Statistical methods used to
analyse and distinguish the two models (power law and lognormal mixture)
are presented here. In addition, the shortcomings of some frequently applied
techniques are discussed, using a new data set from the Tarcdu Sandstone of
the East Carpathians, Romania, and published data from the Marnoso-
Arenacea Formation of Italy. Log—log exceedence plots and least squares
fitting by themselves are inappropriate tools for the analysis of bed thickness
distributions; they must be accompanied by the assessment of other types of
diagrams (cumulative probability, histogram of log-transformed values, q—q
plots) and the use of a measure of goodness-of-fit other than R*, such as the
chi-square or the Kolmogorov—Smirnov statistics. When interpreting data that
do not follow a single straight line on a log-log exceedence plot, it is
important to take into account that ‘segmented’ power laws are not simple
mixtures of power law populations with arbitrary parameters. Although a
simple model of flow confinement does result in segmented plots at the
centre of a basin, the segmented shape of the exceedence curve breaks down
as the sampling location moves away from the basin centre. The lognormal
mixture model is a sedimentologically intuitive alternative to the power law
distribution. The expectation—-maximization algorithm can be used to
estimate the parameters and thus to model lognormal bed thickness
mixtures. Taking into account these observations, the bed thickness data
from the Tarcdu Sandstone are best described by a lognormal mixture model
with two components. Compared with the Marnoso-Arenacea Formation, in
which bed thicknesses of thin beds have a larger variability than thicknesses
of the thicker beds, the thinner-bedded population of the Tarcau Sandstone
has a lower variability than the thicker-bedded population. Such differences
might reflect contrasting depositional settings, such as the difference between
channel levées and basin plains.
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INTRODUCTION

One of the most striking features of turbidite
sequences is the thythmic alternation of sand and
shale over great thicknesses. This is due to the
fact that in deep-water settings coarse clastic
sediment deposition is dominated by discrete
sedimentation events and the background energy
levels are low and, as a result, individual sedi-
mentation events are often well preserved. The
frequent interbedding of sand and shale strongly
influences the overall heterogeneity of the result-
ing succession and the distribution of turbidite
bed thicknesses along with the lateral thickness
changes are important in modelling hydrocarbon
reservoirs that were deposited in deep water (e.g.
Flint & Bryant, 1993; Drinkwater & Pickering,
2001; Tye, 2004; Pyrcz et al., 2005). A precise
statistical description, along with appropriate
graphical and computational tools for the analysis
of this basic stratigraphic parameter, is essential
for further advancements in the field. In addition,
some parameters of the bed thickness distribution
might prove to be useful in differentiating depo-
sitional settings (Malinverno, 1997; Carlson &
Grotzinger, 2001; Mattern, 2002; Sinclair & Cow-
ie, 2003; Clark & Steel, 2006), even when working
with data of limited lateral extent, such as wells
and smaller outcrops.

Four different types of statistical distributions
have been proposed to describe sedimentary bed
thickness data: truncated Gaussian, lognormal,
exponential and power law (or fractal) distribu-
tions. According to an initial line of thought, the
right-skewedness that seems to be ubiquitous in
thickness data is the result of a truncated Gaussian
distribution, reflecting a balance between deposi-
tion and erosion (Kolmogorov, 1951; Mizutani &
Hattori, 1972; Muto, 1995). Muto (1995) has shown
how Kolmogorov’s truncated Gaussian model
might lead to exponential distributions. Several
researchers have suggested that the turbidite
sequences are best characterized by lognormal
distributions (e.g. McBride, 1962; Enos, 1969;
Ricci Lucchi & Valmori, 1980; Murray et al.,
1996; Talling, 2001). Other studies have focused
on whether lognormal or exponential bed thick-
ness distributions dominate the geologic record.
Drummond & Wilkinson (1996) suggested that the
exponential distribution might describe sedimen-
tary thicknesses over a wide range of scales, but the
measurements are biased against very thin beds. Of
late, in parallel with increasing interest in fractal
phenomena and power law scaling in nature
(e.g. Mandelbrot, 1983; Turcotte & Huang, 1995;

Turcotte, 1997), the power law distribution has
gained popularity in studies of turbidite sequences
(Hiscott et al., 1992, 1993; Rothman et al., 1994;
Malinverno, 1997; Pirmez et al., 1997; Chen &
Hiscott, 1999; Winkler & Gawenda, 1999; Awad-
allah et al., 2001; Carlson & Grotzinger, 2001;
Chakraborty et al., 2002; Sinclair & Cowie, 2003).

Power law bed thickness distributions have
been linked to earthquakes with comparably
distributed magnitudes (Beattie & Dade, 1996;
Awadallah et al., 2001) and to self-organized
criticality (Rothman et al., 1994; Bak, 1996). The
theory of self-organized criticality was introduced
by Bak et al. (1988). This theory explains the
widespread occurrence of fractal structures and
1/f noise by the tendency of large dissipative
systems to develop a state of criticality and
generate events of all sizes. The simplest model
for such a system is a sand pile: once it reaches a
critical slope, avalanches of all sizes will be
generated. Obviously, turbidity current-initiating
mechanisms are diverse and probably more com-
plicated than sand piles (e.g. Normark & Piper,
1991). Not much is known about the size
distribution of turbidity current initiating events,
but the magnitudes of such events are likely to
have a skewed distribution and a heavy-tailed
distribution is not unreasonable. Whether this
distribution is power law, exponential, lognormal
or best fits some other model cannot be deter-
mined based on the available data. In addition,
hundreds of kilometres might separate a slide on
the continental slope, canyon wall or delta front
and the final site of deposition and, as Talling
(2001) has argued, ‘it is unlikely that there is such
a simple correspondence between the frequency
distribution of sediment volumes failing on the
continental slope, or the magnitude of seismic
shaking, and the thickness of turbidites deposited
much further downslope’. Well-defined power
law distributions are relatively rare; most turbi-
dite bed thickness data sets show significant
departures from the ideal power law model.
However, this has not prevented the power law
model from being applied. Rather, significant
departures from a single power law have been
called ‘segmented power law distributions’ and
interpreted as the results of modification of the
initial power law distributed input volumes by
erosion, amalgamation, confinement or a combi-
nation of these (Malinverno, 1997; Winkler &
Gawenda, 1999; Carlson & Grotzinger, 2001;
Sinclair & Cowie, 2003).

Talling (2001) has analysed bed thickness data
from the Marnoso-Arenacea Formation in Italy
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and from three other locations and has shown
that turbidites with specific basal grain size
classes have lognormal distributions. Therefore,
sequences that consist only of thick-bedded
turbidites or of thin-bedded turbidites tend to
fit lognormal models. Distributions that plot as
convex-up curves on log-log plots can result
from the mixing of lognormal populations, and
there are a number of sedimentological reasons
why the lognormal mixture model is preferable
to the segmented power law model. The results
presented here build on and support these
findings and the reader is referred to Talling
(2001) for a detailed discussion of the origin and
the arguments in favour of the lognormal mixture
model. This paper focuses on the problems and
potential solutions of deciding which distribu-
tion model best fits the data, by: (i) presenting
the statistical methodology and the associated
pitfalls in analysing bed thickness distributions;
(ii) re-examining the idea of ‘segmented power
law distributions’ from a statistical point of view;
(iii) suggesting a methodology for estimating and
modelling the two main components of a log-
normal mixture; and (iv) applying these tech-
niques to a turbidite succession and comparing
the results with the Marnoso-Arenacea Forma-
tion. It is not the purpose of this paper to review
all the possible distribution models or to cover a
large number of turbidite bed thickness data sets.
Rather, the focus is on the power law and
lognormal models, using the bed thickness data
from the Tarcdu Sandstone as a case study.

GEOLOGIC SETTING OF THE TARCAU
SANDSTONE

The Tarcdu Sandstone is one of the major
sand-rich formations of the flysch belt of the
Romanian East Carpathians. It represents a turbi-
dite system deposited during the Palaeocene to
Middle Eocene (Sandulescu & Sdndulescu, 1973)
between the active margin of a small continental
block to the west (Fig. 1), termed the Tisza-Dacia
Block (Csontos, 1995), and the passive margin of
the East European Craton to the east. Palaeocurrent
data suggest a longitudinal dispersal pattern
(Contescu et al., 1967; Jipa, 1967). A microfauna
consisting mainly of agglutinant foraminifera
characteristic of deep-water flysch assemblages
(Sandulescu & Sandulescu, 1973) and an abundant
ichnofauna typical of the Nereites ichnofacies
(Buatois et al., 2001) suggest deposition at bathyal
water depths. Predominant lithologies are thick-
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bedded pebbly sandstones and medium-bedded to
thin-bedded sandstones and shales (Figs 2 and 3),
largely corresponding to the Bouma (1962) and
Lowe (1982) turbidites. The presence of abundant
amalgamation, erosion, debris flows and conglom-
erate beds within the thicker-bedded intervals
suggests the presence of channels (Sylvester,
2002), and most of the thin-bedded intervals are
likely to represent overbank deposits. The Tarcau
Sandstone shows a number of important differ-
ences when compared with the well-studied
Marnoso-Arenacea Formation: (i) it has numerous
coarser-grained packages (not only pebbly sand-
stones, mainly, but also conglomerates); (ii) many
of these coarse-grained deposits probably repre-
sent channel fills, whereas most of the Marnoso-
Arenacea is interpreted as basin plain deposits;
and (iii) the lateral extent of beds in the Tarcdu
Sandstone is limited and correlation from one
outcrop to the next is impossible, whereas numer-
ous beds in the Marnoso-Arenacea can be correla-
ted across the whole basin (Ricci Lucchi &
Valmori, 1980; Amy & Talling, 2006). Comparing
bed thickness data from these two successions
might give insights into the differences between
basin plain deposits and channel levée systems.

FIELD METHODS

The Tarcau Sandstone is exposed in a series of
roadcuts near the Siriu Dam in the Buzidu Valley
area of the East Carpathians (Fig. 1). More than
700 m of stratigraphic sections were measured
(Fig. 2; Sylvester, 2002) and thicknesses of indi-
vidual Bouma divisions and other characteristics,
such as maximum grain size, presence of erosion,
mud clasts and sedimentary structures were
noted. The overall finer-grained and mainly thin-
ner-bedded upper part of the Tarcdu Sandstone is
informally referred to below as the Upper Tarcdu
Sandstone and the bed thicknesses of this section
have also been analysed separately (excluding the
uppermost thick-bedded pebbly sandstone pack-
age; Fig. 2).

Precise measurement of bed thicknesses is only
possible where abundant sandstone beds are
present in the succession. Some relatively poorly
exposed, predominantly shaly sections were
therefore not included in the study. For the
purpose of this paper, ‘bed thickness’ is equivalent
to ‘sedimentation unit thickness’. In parts of the
succession where individual events consist of a
sandstone—shale pair, the combined thickness of
the two represents one value in the bed thickness

© 2007 The Author. Journal compilation © 2007 International Association of Sedimentologists, Sedimentology, 1-24



4 Z. Sylvester

- Krakow

L3
Inner fiysch nappes

ieniny Kiippen Belt
¥ Danubian Nappe
[+ _+ | Complex
Inner Carpathian &
EastAlpineCrystalline-
Mesozoic Units

“] Neogene votcanics Q

Moesian Platform

East
European
Platform

deapaioq

O Bucharest

v =Y
Subcarpathian nappe b LD

< Lower Miocene

H]::l Oligocene
Podu Secu
|:| Formaton
(Upper Eocene)
Tarcau Sst.
- (Paleacens -
Middle Eocene)
Lower - Middle
Eocene
Cretaceous -
Paleocene

\ Studied section

Tarcau  Nappe

Fig. 1. (A) Geologic sketch of the
Carpathians, based on Sandulescu
(1988) and Zweigel et al. (1998)
(TDB, Tisza-Dacia Block; NPB,
North Pannonian Block). (B) Geo-
logic map of the Tarcdu Nappe in
the Buzau Valley area, simplified
from Murgeanu et al. (1968), with
location of measured sections where

bed thickness data were derived.

series (Fig. 4). Working with sedimentation unit
thicknesses as opposed to treating sandstone and
mudstone layers separately is reasonable if one of
the underlying assumptions of the analysis is that
bed thicknesses have a clear relationship with
individual event bed volumes (e.g. Malinverno,
1997). In addition, if viewed separately, sandstone
and mudstone thicknesses still have the signa-
tures of mixtures (see below), suggesting that
analysing event bed thicknesses, grouped as a
function of their basal Bouma divisions or grain
size (Talling, 2001), is a better approach.

In coarser-grained and thicker-bedded parts of
the succession, where amalgamation is frequent,

boundaries of individual event beds were care-
fully identified (Fig. 4). This was possible mainly
by detecting subtle surfaces across which well-
defined coarsening occurs. Breaking down amal-
gamated sections into individual event beds (see
also Sinclair & Cowie, 2003) is in contrast with
the lumping approach adopted by Carlson &
Grotzinger (2001). Note that bed thickness dis-
tributions of the thick-bedded parts of the Tarcdu
Sandstone would be entirely different if the
amalgamation surfaces were ignored. Working
with event bed thicknesses makes it possible to
study how bed thickness relates to bed volume
and depositional processes, whereas the
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Fig. 2. Schematic stratigraphic col-
umn of the Tarcdu Sandstone near
Siriu Dam, Buzdu Valley, with the
measured bed thickness series
shown on the right.

Fig. 3. (A) Thin-bedded, fine-
grained turbidite package overlain
by a thick-bedded, amalgamated
pebbly sandstone unit. (B) Two
medium-bedded, laminated sand-
stone packages separated by a thin-
bedded, mudstone dominated unit.
For the stratigraphic position of
these sections, see Fig. 2.
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Fig. 4. Examples of measured sections from a thick-
bedded, amalgamated pebbly sandstone unit and a
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boundaries, used in most of the bed thickness calcu-
lations, are shown. Note different vertical scales.

in the succession and mainly present in the
middle of shale-dominated sections. These de-
posits are unlikely to strongly affect the measured
bed thickness distributions.

POWER LAW BED THICKNESS
DISTRIBUTIONS

A power law distribution, called Pareto distribu-
tion by economists, is characterized by an exceed-
ence probability (i.e. the probability that a value

is greater than or equal to x) described by a power
law:

PIX >+ = (2 (1)

where m is the minimum value of x. The exceed-
ence probability is often called complementary
cumulative distribution function (CCDF). The
cumulative distribution function (CDF) is

HX<ﬂ:44(§y (2);

and the probability density function (PDF) is:
P[X = x| = km#x= (/1) (3).

Note that the PDF of a Pareto distribution is also
a power law, but the exponent is —(k + 1), as
opposed to —k in the case of the exceedence
probability (which equals 1 — CDF; Fig. 5). This
means that, although both the PDF and the
1 — CDF plot as straight lines on log—log plots,
the PDF line is steeper than the exceedence line
(Fig. 5B). A power law distribution is defined by
two parameters: the location parameter m and the
shape parameter f. Both parameters must be
positive. For comparison, the PDF, CDF and
CCDF curves are illustrated for the lognormal
distribution as well (Fig. 5).

The problems with least squares fitting

Most studies dealing with turbidite bed thick-
ness distributions rely on the fact that power law
distributions plot as straight lines on log-log
exceedence probability diagrams. The best dis-
tribution model is chosen through visual inspec-
tion of these plots. The power law exponent is
determined using least squares fitting on the log-
transformed values of bed thickness and exceed-
ence probability. In some cases, the coefficient of
determination R? which is the ratio of the
explained sum of squares to the total sum of
squares, is used as a measure of goodness-of-fit
either to support or to reject the power law
model (Carlson & Grotzinger, 2001; Sinclair &
Cowie, 2003).

Least squares fitting is a simple method for
estimating the power law exponent. However,
as noted by Goldstein etal. (2004), such
estimates must be qualified by some assessment
of their goodness-of-fit. R* is inappropriate for
this purpose, especially when working with
exceedence probability plots or cumulative plots
in general. By definition, the exceedence
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Fig. 5. Plots of the probability density function (PDF), cumulative distribution function (CDF), and exceedence
probability (which equals 1 — CDF) of lognormal and power-law distributions on linear and log-log plots. Note that
both the exceedence probability and the PDF of a power law distribution plot as straight lines on log—log diagrams
(B). The exceedence probability of a lognormal distribution could be misinterpreted as consisting of two straight line

segments on the log—log plot, that is, two power laws (D).

probability is decreasing as bed thickness
increases (Fig. 5), and R* will be relatively large
even when the curve is clearly non-linear. In
addition, the significance of this statistic cannot
be tested because some assumptions of classical
regression are violated. The validity of the
regression statistic depends on the distribution
of the residuals (e.g. Swan & Sandilands, 1995):
they must be homoscedastic, that is, there
cannot be any trend in the distribution of
variance; and they must be normally distri-
buted. These assumptions are not satisfied by
the residuals of a typical exceedence probability
analysis. The Kolmogorov—Smirnov and the
chi-square goodness-of-fit tests are more appro-

priate measures; they will be described briefly
later in the paper.

The ‘thin bed problem’

Another characteristic of the exceedence prob-
ability log—log plots is that they give emphasis to
the upper tail of the distribution, that is, to the
thick beds and tend to hide the shape of the
distribution at the lower tail, where the much
more numerous thin beds are located (see also
Drummond & Coates, 2000). Departures from the
power law model often occur at the thin tail of the
distribution, but these departures are visually
suppressed on these plots. For example, in the
case of the Upper Tarcdu Sandstone, the depar-
ture from a power law at the thin end of the
distribution seems relatively insignificant on the
exceedence plot (Fig. 6A). Based on this diagram,
it looks like the data are relatively well described
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Fig. 6. (A) Log-log exceedence probability plot of bed
thicknesses in the Upper Tarcau Sandstone (thick black
line). Two power-law models with the same power-law
exponent (f = 1-08) but different location parameter m
(or minimum bed thickness) are also shown. (B) His-
togram of bed thickness data from the Upper Tarcdu
Sandstone. (C) Histogram of a synthetic bed thickness
series that fits a power law with f = 1-08 and m = 3.
The histograms clearly indicate that the actual data set
should have a lot more thin beds in order to fit a power
law distribution, whereas the log—log plots tend to hide
this disparity.

by a power law with a slope of about 1-08; R* is
0-964. However, there are several problems with
such a model. Firstly, plotting the histograms of
the log-transformed data for the real data set and a
simulated distribution reveals that the departure
from the power law at the thin beds is much more
significant: the shapes of the two histograms are
strongly dissimilar (Fig. 6). Secondly, a location
parameter has to be chosen, that is, a minimum
bed thickness for the power law distribution. A
better visual fit can be achieved if this is set at
3 cm, the point where the departure starts. Then
again, there are clearly a number of beds in the
Tarcau data that are thinner than 3 cm. If the
location parameter is set to 1 cm, the thinnest bed
measured, the model exceedence probabilities
drop significantly below the Tarcdu data, again
suggesting the mismatch in the number of thin
beds. It may be calculated what proportion of beds
should be thinner than 3 cm (Fig. 6A) in order to
satisfy this model: almost 70% of the beds should
be less than 3 cm thick. This means either that
almost 3000 thin beds were not measured during
the field work, or that the power law model is not
appropriate in this case. Although it is true that
the thin beds probably are under-represented in
the data set, mainly because of the less-than-
perfect exposure of some of the shaliest sections,
such a degree of mismatch at least raises ques-
tions about the practicality of the power law
model. On the one hand, it is only in the rarest
circumstances that it is possible to measure
correctly all bed thicknesses throughout a whole
stratigraphic unit (e.g. Talling, 2001); on the other
hand, the requirement to measure all the thin
beds focuses the attention on the facies that
commonly forms the non-reservoir parts of hydro-
carbon accumulations. Compared with the ‘thin
bed problem’, departures from a single straight
line in the mid-range of the distribution probably
represent a more significant challenge to the
general applicability of the power law model.

Segmented power law distributions

In many cases, turbidite bed thickness distribu-
tions show significant departures from a straight
line on the log-log plot and these departures are
described frequently in terms of ‘segmented
power laws’ (Rothman & Grotzinger, 1995; Pirmez
et al., 1997; Chen & Hiscott, 1999; Awadallah
et al., 2001; Sinclair & Cowie, 2003). Of 18 plots
of bed thickness data in the literature, 14 are
interpreted in terms of segmented power laws,
two as impossible to fit with straight lines, and
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Fig. 7. (A) Bed thickness data from the Tarcdu Sand-
stone interpreted as a ‘segmented power law distribu-
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200 cm. R? values are 0-988 for the thin-bedded part of
the data and 0-987 for beds thicker than 200 cm. (B)
Beds thinner and thicker than 200 cm plotted sepa-
rately; the thinner-bedded set does not plot as a straight
line (because it is truncated at 200 cm).

there are only three that seem to fit single power
laws. The two segments with different power law
exponents are treated as two different popula-
tions, purportedly well characterized by the
exponent estimated from the exceedence plot.
The implicit assumption is that the data are best
described as a mixture of two power law
distributions. A similar interpretation of the
Tarcdu Sandstone bed thickness data is shown
in Fig. 7. Beds with thicknesses <200 cm seem to
have a different exponent (ff ~ 0-63) compared
with beds thicker than 200 cm (f ~ 2-62). These
values are usually found using linear regression,
and sometimes large values of R® are treated as
evidence for a good fit (Drummond & Coates,
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2000; Sinclair & Cowie, 2003). Indeed, in the case
of the Tarcdu Sandstone data, R? is 0-9885 for the
thin bedded part of the data, and it is 0-9871 for
beds thicker than 200 cm.

However, if the two groups are plotted sepa-
rately, it becomes obvious that the significance of
this bed thickness threshold is unclear. Although
the thicker bedded part of the data might be
relatively well described as a power law distri-
bution with a minimum bed thickness of 200 cm,
the beds thinner than 200 cm do not plot as a
straight line and, if trying to force them to
conform with some power law models, in the
best case they can be thought of as a truncated
power law distribution.

A series of theoretical exceedence probability
plots have been generated to see: (i) what is the
behaviour of mixtures of two power law distri-
butions?; and (ii) how can a segmented power
law be generated on such plots (Fig. 8)?. In
general, mixtures of two power law-distributed
populations result in exceedence plots that are
quite different from those observed in plots of
real data. If two populations of roughly equal
size with different exponents but with the same
location parameter are mixed, the exceedence
plot will hardly deviate from a single straight
line and a conventional exceedence analysis
would conclude that there was a single popula-
tion (Fig. 8A). If the location parameters are
different as well, a curve with two concave-up
segments results that do not resemble any of the
plots of actual data (Fig. 8B). Note that it would
be difficult to derive meaningful exponents from
this curve. Slopes on exceedence plots are not
simply a function of the distribution of the
values in the interval where the slope is roughly
constant but also depend on how many data
points are outside this interval. To generate a
mixture that has a clear segmented character, the
thinner-bedded component must be truncated at
the minimum bed thickness for the second
population (Fig. 8C). In addition, the number of
beds in the thicker-bedded population, n,, must
satisfy the relationship:

T (ml m (4)

ni+ny, \um, ’
where n, + n, is the total number of beds, m; and
m, are the location parameters, and f1 is the
exponent of the thinner-bedded population. This
also means that the second population must be a

fraction of the thinner-bedded population, of the
order of a maximum of a few percent (Fig. 8C).
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Fig. 8. Log-log exceedence probability curves of the-
oretical mixtures of two power law distributions. Of all
these possible curve shapes, only one specific curve,
which belongs to case (C), results in a segmented power
law. Numbers near the curves indicate the proportion
of the lower-exponent (f, = 1) population in the mix-
ture. (A) Neither of the distributions is truncated; both
have a minimum bed thickness of 1 cm, but they have
different exponents. (B) The thicker-bedded population
is truncated at its lower end: the minimum bed thick-
ness is m, = 100 cm. (C) The thinner bedded popula-
tion is truncated as well, at its upper end.

It is hard to think of a relatively simple process
resulting in a power law mixture that satisfies
these criteria for generating a segmented power
law on a log—log plot. Yet there is a mathematical
model of confinement of turbidite beds that can
indeed result in segmented power laws if a series
of assumptions are valid. This model will be the
subject of the next section.

The Malinverno (1997) model for segmented
power laws

Assuming a power law distribution of bed vol-
umes, Malinverno (1997) derived a simple rela-
tionship among the scaling between bed length
and bed thickness y, the exponent of the bed
volume distribution ¢, and the spatial distribution
of the bed depocentres relative to the vertical
sampling line, characterized by the exponent d:

p=c+y(2c—d) (5).

Malinverno (1997) also developed a model of
basinal confinement of turbidites and showed
how the confinement can alter the bed thickness
distribution at the basin centre. Beds of cylindri-
cal shape are placed randomly into a circular
basin and the bed thicknesses are measured at a
vertical sampling line at the basin centre. Malin-
verno (1997) interpreted the resulting change in
the shape of the exceedence probability curve as a
transition to a segmented power law, and derived
relationships for the exponents (or slopes) of the
two segments or populations. Beds with a radius
much less than the basin diameter will be distri-
buted throughout the basin so that d ~ 2, and the
original relationship becomes:

ﬁsmall - C(l + 27)) -2y (6)

Beds with diameters larger than the radius of the
basin will be intersected by a sampling line at the
basin centre, therefore d ~ 1, and:

Blarge = C(l + 2“/) (7)

Some beds from both these categories are in
contact with the basin margin; they can be
thought of as deposits of flows that locally
interact with the basin margin (e.g. they are
deflected or reflected). In contrast, ‘fully ponded’
beds should cover the whole basin floor and they
form a third category that can be distinguished on
a log-log exceedence plot if modelled appropri-
ately.
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In order to assess the general applicability of
this ‘segmentation through confinement’ model, a
series of numerical experiments comparable with
those of Malinverno (1997) have been run.
Although Malinverno (1997) used a bed volume
distribution with the largest bed diameter equal to
the basin size, in the present experiments there is
no interdependence between the largest bed
volume and the size of the basin. The basin size
is fixed and beds that would exceed the basin
diameter using the thickness—length scaling rela-
tionship are considered ‘ponded’, their diameter
is set equal to the basin diameter and their
thicknesses are increased accordingly. This setup
makes it possible to run millions of flows with a
power law distribution of volumes without hav-
ing to change the basin size. The resulting bed
thickness series can contain several tens of
thousands of data points, an important advantage
that helps visualize the subtle variations in the
shapes of the exceedence probability curves.

Figure 9 shows the results of two experiments
run with similar parameters, the only difference
being the value of the bed volume distribution
exponent c. Based on these results, the following
observations can be made.

1 At the basin centre, the Malinverno model
does generate exceedence probability curves with
straight segments, although the transition be-
tween the first two segments is smoothly curved
and does not show a well-defined breakpoint.

2 The value of fsman is overpredicted by Eq. 6
(Fig. 9) and is better approximated by Eq. 4. The
reason for this is that the original bed thickness
exponent (which, for d = 2, is the same as fisman)
decreases as the oversampling of thick beds
pushes up the first segment of the curve. For all
bed thicknesses other than the thickest beds, the
exceedence probability increases compared with
the curve unaffected by confinement because
more thick beds are intercepted by the sampling
line. If Eq. 6 holds, for given c and y values, the
smaller-than-predicted fgpnan would require a d
value larger than 2 which is impossible by defi-
nition. Because only a few beds exceed the
thicknesses characterized by Piawge, the value of
Plarge is affected to a much smaller degree and the
second straight segment of the numerical experi-
ment has a slope similar to the predicted value.

3 As suggested by Malinverno (1997), extremely
large bed volumes result in a third segment with a
slope equal to the bed volume exponent c. These
volumes would be the equivalent of flows that
entirely cover the basin floor and are fully ponded.
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Fig. 9. Results of two numerical experiments that use
the assumptions of the confined basin model of Ma-
linverno (1997). The black lines represent bed thick-
nesses measured at the centre of the circular basin; the
red lines correspond to the curves predicted by the
equations of Malinverno (1997). The only difference
between the setup of experiment 1 and experiment 2 is
the power law exponent of the bed-volume distribu-
tions ¢; m, is the minimum bed thickness; m, is the
threshold bed thickness that separates small-volume
beds from beds with a diameter larger than the radius of
the basin; and mj is the threshold bed thickness above
which beds are ‘fully ponded’ (beds with a diameter
equal to the basin diameter). The other parameters are:
¢ = exponent of bed volume distribution; y = scaling
exponent between bed length and bed thickness;
a = scaling constant between bed length and bed
thickness (I = ah’, where [ is the bed diameter and h
the bed thickness); n beds = total number of beds
deposited in the basin; min bed vol = minimum bed
volume; basin size = basin diameter; n., = number
of beds intercepted by sampling line; n, = number of
beds in the first population; n, = number of beds in the
second population; nz = number of beds in ‘fully
ponded’ population.

This is a relatively simple model that can result
in straight segments on log—log exceedence prob-
ability plots of bed thickness data. However,
before interpreting most departures on log-log
plots from a single straight line as due to
confinement, it is important to consider the
limitations of the Malinverno (1997) model:

1 The input bed volumes must have a power
law distribution. Although recent estimates from
the Marnoso-Arenacea Formation suggest that
bed volumes have a lognormal distribution (Tal-
ling et al., 2007), it is possible that the power law
assumption is valid in other systems. However,
even if the power law input volume distribution
is accepted, this initial range will be strongly
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modified if there are well-developed channel
levées. In such systems, most of the flows are
guided by channels, and often deposit a signifi-
cant part of their sediment in the overbank area
and, as a result, go through an efficient modifi-
cation of volumes before reaching the less
channelized site of deposition.

2 If confinement was the cause of most devia-
tions from a single power law of bed thickness
data, at least in some cases the third segment of
the plot should be seen as well, that is, a few
‘megabeds’ that cover the whole basin or con-
tainer. No such outliers are reported in the lit-
erature. In a high-quality data set, even a small
number of such data points would plot along a
different trend than the second population char-
acterized by fiarge (Fig. 9). Many of the beds in the
Marnoso-Arenacea Formation extend across the
entire basin (Ricci Lucchi & Valmori, 1980; Amy
& Talling, 2006), yet no third segment is observed
on the log-log exceedence plots.

3 In channel levée systems, beds deposited in
the overbank areas are likely to be characterized
by different length—thickness relationships and
different degrees of confinement than beds
deposited in the channels. In addition, the geo-
metric configurations of these settings are obvi-
ously more complicated than those of a circular
basin.

4 The individual segments corresponding to
Prarge and fisman can easily be identified with large
data sets collected exactly at the basin centre, but
this task becomes increasingly difficult as the
sampling location moves away from the centre
and as the number of data points is reduced. Five
experiments have been run with the same
parameters but different sampling locations
(Fig. 10). Although it is possible to derive rea-
sonable estimates for fja5 and fgman in the case of
sampling location 1 and possibly location 2 as
well, the clear segmented character of the ex-
ceedence plot disappears and determining pjarge
and fsman becomes impossible at location 3. The
dashed circle in the centre of the basin shows the
approximate area characterized by more or less
segmented plots. This is <20% of the whole area
of the basin. Sampling locations falling within the
remaining 80% of the basin area would show no
clear evidence of confinement.

In summary, a distribution described by a
segmented power law on an exceedence plot is
not a simple mixture of two power law distribu-
tions of arbitrary parameters. Although the Ma-
linverno (1997) model of confinement produces

e

Exceedence probability
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Fig. 10. Results of five numerical experiments that use
the assumptions of the confined basin model of
Malinverno (1997), but place the vertical sampling line
progressively away from the basin centre. The indi-
vidual segments corresponding to the three popula-
tions shown in Fig. 6 become increasingly difficult to
recognize as the sampling line moves away from the
immediate neighbourhood of the basin centre. Dashed
lines show the segment slopes predicted by the
Malinverno (1997) equations.

bed thickness distributions that do result in
segmented power laws at the basin centre, a
number of assumptions are necessary that restrict
the applicability of this model. Identifying two or
more relatively straight segments in exceedence
probability plots can be highly subjective, needs
high-quality data sets and should be used in the
analysis of turbidite bed thickness data only if the
assumptions of the Malinverno (1997) model are
likely to be satisfied. Even in such cases, statis-
tical models other than the power law distribu-
tion should be considered.

MIXTURES OF LOGNORMAL
DISTRIBUTIONS

Because the use of the exponential distribution
for describing bed thickness data also faces the
‘thin bed problem’ (see Drummond & Wilkinson,
1996 for a discussion), the lognormal model
seems a more practical alternative. Lognormal
distributions are frequent in nature; they result
from the multiplicative effects of forces inde-
pendent of each other, as opposed to the normal
distribution that results from the addition of the
effects (e.g. Aitchison & Brown, 1957; Limpert
et al., 2001). Talling (2001) suggested that the
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lognormal distribution might be the most appro-
priate for characterizing turbidite bed thicknesses
from a number of successions. Talling (2001) also
drew attention to the bimodality of many turbi-
dite bed thickness data sets, and pointed out that
two lognormal populations may result in ‘seg-
mented power laws’ on exceedence probability
plots. Although the two populations seem to
correspond to lithologic and facies differences, it
would be useful to identify the two components
of the lognormal mixture in a quantitative way.
The questions addressed here are the following:
(i) how can the parameters of the two (or more)
lognormal components be extracted from a log-
normal mixture?; and (ii) what is the appropriate
statistical methodology for comparing the good-
ness-of-fit of the lognormal mixture model with
the power law model?

Finding the lognormal components of a
mixture

Separating components of a Gaussian mixture is
an important subject in statistics that has been
discussed in one of the early statistical papers
(Pearson, 1894). Since the 1980s, in parallel with
the increase in computational power, the number
of publications on mixture modelling has ampli-
fied considerably (e.g. McLachlan & Peel, 2000,
and references therein). Before the widespread
availability of computers, identifying and separ-
ating the components of a grain-size mixture was
not a simple exercise (e.g. Spencer, 1963; Tanner,
1964). However, today there are several algo-
rithms available to address this problem, and the
expectation—maximization algorithm is one of the
best candidates for separating components both
in grain size and in bed thickness data. Figure 11
illustrates the shapes of the cumulative probabil-
ity plots for two types of lognormal mixtures: in
the first type, the thinner-bedded population has
a smaller standard deviation than the thicker
bedded population; in the second type, the
thicker-bedded group has a smaller variance.
The  expectation—-maximization  algorithm
(Dempster et al., 1977) is a popular algorithm in
machine learning and statistical computing that
is often applied in parameter estimation prob-
lems, for example, in estimating parameters of
Gaussian mixture models (e.g. Kung et al., 2004).
K-means clustering is an alternative approach,
but the expectation—maximization algorithm has
the advantage that the parameters of the two
distributions are derived using maximum like-
lihood estimation during the iterations and the
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classification results are probabilistic. In the case
of bed thicknesses, this means that the probabil-
ities of each bed belonging to a thick-bedded or
the thin-bedded population may be found,
whereas class memberships in K-means cluster-
ing are either 0 or 1.

Using a Matlab® implementation of the EM
algorithm (Nabney, 2001), the bed thickness data
from the Tarcau Sandstone and the Marnoso-
Arenacea Formation have been analysed (Marn-
oso-Arenacea Formation data from Talling, 2001)
and the two most probable lognormal compo-
nents separated. The results are shown in Figs 12
and 13. In addition to the log-log exceedence
probability plot, other diagrams are also presen-
ted: the histogram of the log-transformed values,
the PDFs of the model distributions and the
cumulative probability plot of the log-trans-
formed values. Using a range of diagram types
guarantees that all potential departures from the
statistical model are appropriately highlighted.

In both cases, the visual fit between the
lognormal mixture model and the actual data is
better than in the case of single or segmented
power law models. Segmented power law inter-
pretations applied to the log—log exceedence plots
would ignore obvious non-linear variations in the
curve shape that are remarkably well described by
the lognormal mixtures (Figs 12D and 13D). In
addition, there is a relatively good, although not
perfect match, between the thin-bedded and
thick-bedded lognormal components and beds
starting with Bouma sequences T, or Tq and T, or
Ty, respectively (Fig. 14). This relationship could
be used to estimate proportions of different
turbidite facies where no data other than bed
thicknesses are available (e.g. when bed thickness
is estimated from high-resolution image logs).

If plotted separately, thicknesses of Bouma
divisions also seem to have lognormal distribu-
tions (Fig. 15). In fact, T, and Tj, intervals match
the lognormal model better than the thick-bedded
population identified as the beds starting with T,
or Ty divisions (Fig. 14A). It is not clear how
these divisions tend to combine to form the thick-
bedded population, but it does seem that the
basal Bouma division is one of the defining
parameters of the thickness of the whole event
bed. In fact, the slight divergence from the
lognormal model, when beds starting with T, or
Ty, divisions are grouped together, is reduced
when beds starting with T, and beds starting with
Ty, are plotted separately. Thus, it is possible that
the Tarcdu bed thickness data comprise more
than two lognormal populations. However, the
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Fig. 11. Cumulative probability and log—log exceedence probability curves of theoretical mixtures of two lognormal
distributions. Note that the exceedence curves shown in (D) could be misinterpreted as segmented power laws.
Numbers near the curves indicate the proportion of the thinner bedded population in the mixture. (A) Cumulative
probability curves of mixtures of two lognormal populations, the thinner bedded having a lower variance than the
thicker bedded one. (B) Cumulative probability curves of mixtures of two lognormal populations, the thinner bedded
having a higher variance than the thicker bedded one. (C) Exceedence probability curves of mixtures of two log-
normal populations, the thinner bedded having a lower variance than the thicker bedded one. (D) Exceedence
probability curves of mixtures of two lognormal populations, the thinner-bedded population having a higher vari-
ance than the thicker-bedded population. m and s are the mean and the standard deviation of the 10-base logarithm

of the bed thicknesses.

two-component model gives a good match to the
data (Fig. 12) and adding more populations
would significantly — and probably unnecessarily
— complicate the model. Sandstone bed thickness
is also plotted on Fig. 15; this curve is clearly not
a single lognormal population, but a mixture of
several different groups.

Figure 16 shows the results of the classification
of the Tarcdu Sandstone bed thickness series into
thin-bedded and thick-bedded groups. In the case
of the Tarcdu Sandstone, the limit between the
thin-bedded and thick-bedded populations is ca
30 cm, whereas the segmented power law model
would predict a limit of ca 200 cm. The 30 cm

limit is notably similar to that in the Marnoso-
Arenacea Formation (Talling, 2001). The classifi-
cation results of the bed thickness series using the
two different approaches show that the lognormal
mixture model gives a more intuitive outcome:
the lognormal thick-bedded population largely
corresponds to the thick-bedded clusters in the
succession, whereas the 200 cm limit only dis-
tinguishes a few very thick beds that are not
clustered spatially.

An important difference between the Tarcdu
Sandstone and the Marnoso-Arenacea Forma-
tion is as follows. In the Tarciu Sandstone, the
log-transformed thin-bedded population has a
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Fig. 12. Interpretation of the bed thickness data from the Tarcau Sandstone as a mixture of two lognormal popu-
lations. (A) Histogram of the log-transformed bed thicknesses, with the two model distribution PDFs shown. (B)
Model PDFs and their sum shown on a linear x-axis. (C) Cumulative probability plot of the data and the model curves
of the two lognormal distributions. Mean is the geometric mean, std. dev. is the standard deviation of the 10-base
logarithm of the bed thickness series. (D) Log-log exceedence probability plot of the data and the model curves.

smaller standard deviation than the thick-bedded
population; in the Marnoso-Arenacea Formation,
the thicker-bedded cluster has less variability
than the thinner-bedded cluster. These two dif-
ferent mixture types produce cumulative curves
of different shapes on both probability ‘paper’ and
on log—log exceedence plots (Figs 11 and 14).
Note that ‘Marnoso-Arenacea type’ mixtures, in
which the thicker-bedded population has a smal-
ler standard deviation, tend to generate log—log
exceedence plots that could easily be misinter-
preted as segmented power laws. Unless strongly
dominated by the thinner-bedded population,
‘Tarcdu-type’ mixtures result in smoothly curving
log-log exceedence plots that would be more
difficult to interpret in terms of segmented power
laws (but not impossible; see Fig. 7A).

Choosing between the power law and
lognormal models using statistical testing

The Kolmogorov—Smirnov and the chi-square test
statistics were used for testing both the single
power law and the lognormal mixture models in
the case of the Upper Tarcau Sandstone.

The most widely used goodness-of-fit tests for
non-normal distributions are the chi-square test
and the Kolmogorov—Smirnov test (e.g. Swan &
Sandilands, 1995; Davis, 2002). The chi-square
test compares the observed frequencies of values
with the expected frequencies that correspond to
the distribution model. The main disadvantage of
the chi-square test is that the data must be
grouped into bins and the result is influenced
by the number of bins used. In contrast, the
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probability plot of the data and the model curves.

Kolmogorov—Smirnov test compares the cumula-
tive relative frequencies of the data with the
cumulative distribution function (CDF) of the
assumed underlying distribution model. The
result does not depend on the way the data are
divided into groups. The Kolmogorov—Smirnov
test statistic corresponds to the largest difference
between the cumulative relative frequency curve
and the CDF of the model distribution.

Tables for critical values of the conventional
Kolmogorov—Smirnov test statistic are valid only
if the distribution parameters are not estimated
from the data (Davis, 2002; Goldstein et al., 2004).
As in this study, both the location parameter and
the shape parameter of the power law distribution
are estimated from the data, the critical values
must be recalculated. Largely based on the sug-

gestions of Goldstein et al. (2004), the following
methodology has been adopted and implemented
in Matlab®: (i) using maximum likelihood esti-
mation, the power law exponent of the data set is
assessed; (ii) based on the CDF of a distribution
with this exponent, the Kolmogorov—Smirnov
statistic is found; (iii) a large number of artificial
populations with the same number of values and
the same parameters as the dataset are generated
and steps (i) and (ii) are repeated for each to
create a distribution of KS statistics; and (iv)
critical values can be read from this distribution
for different levels of significance. The null
hypothesis states that the data come from a
distribution with the estimated shape and loca-
tion parameters. If the significance level is chosen
as 5% and the Kolmogorov—Smirnov statistic of
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Fig. 15. Cumulative probability plots of Bouma divi-
sion thicknesses. Individual divisions tend to have
lognormal distributions.

the data set is larger than the 95th percentile of
the values derived through randomization, the
null hypothesis can be rejected. Alternatively, the
difference between the actual and the expected
Kolmogorov—Smirnov statistic, measured in
standard deviations, can be used as a quantitative
measure of goodness-of-fit to the distribution.

In a manner comparable with the procedure
used to apply the Kolmogorov—Smirnov test to a
power law model, the following steps were used
to calculate test statistics for the lognormal mix-
ture model: (i) using the expectation—-maximiza-
tion algorithm, the parameters of the two
lognormal populations are estimated from the

data; (ii) the test statistic (Kolmogorov—Smirnov
or chi-square) of the original data is calculated;
(iii) a large number of artificial populations with
the same number of values and the same para-
meters as the data set are generated, the para-
meters are estimated and then the test statistics
are calculated for each to create a distribution of
test statistics; and (iv) critical values can be read
from this distribution for different levels of
significance.

The Upper Tarcdu Sandstone bed thickness
data plot close to a straight line on an exceedence
log-log diagram, and have been previously inter-
preted as a good example of a power law distri-
bution (Sylvester, 2002). The results of the
Kolmogorov—Smirnov and chi-square tests are
shown in Table 1. As a result of the large number
of measurements, the null hypothesis can be
rejected in the Kolmogorov—Smirnov test for both
the power law and the lognormal mixture model.
Using the chi-square statistic, the lognormal
mixture model cannot be rejected at the 5%
significance level, whereas the power law alter-
native fails the test. More importantly, the devi-
ations from the expected test statistics are almost
five times as large in the case of the power law
model as in the case of the lognormal mixture
model. This result strongly suggests that the latter
provides a better description of this data set.

In addition to goodness-of-fit tests, quantile—
quantile (q—q) plots are also useful in choosing
the distribution model that provides a better fit.
On a g—q plot, the quantiles of the data are plotted
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than the analysis based on the segmented power law model.

against the quantiles of the model distribution
(Fig. 17); the better the fit between the model and
the data, the closer the plot comes to the x =y
straight line on the diagram. The q—q plots for the
Upper Tarcdu Sandstone support the results of
the goodness-of-fit testing: compared with the
lognormal mixture model, the departures from
the power law model are significantly larger at
both the thick-bedded and thin-bedded ends.
Undeniably, the lognormal mixture model has
five parameters (two mean, two standard devi-
ation values and the proportion of the two
populations), whereas the power law model has
only two (the exponent and the minimum bed
thickness); therefore, the better fit of the lognor-
mal mixture does not necessarily qualify it as the
‘correct’” model. More parameters mean larger
flexibility and easier fit to any data set. However,
the lognormal mixture model is preferred here
because it is sedimentologically meaningful and

probably more useful in reservoir characteriza-
tion, as explained below.

DISCUSSION

Power law distributions: the rule or the
exception?

As noted by Mitzenmacher (2004), the question
whether a particular empirical data set fits better
the power law or the lognormal distribution has
generated discussion in a number of different
fields such as economics, biology, chemistry,
information theory and computer science. The
two types of distributions can result from similar
basic generative models; and a significant portion
of a lognormal distribution with a large variance
behaves approximately as a straight line on a log—
log exceedence plot (Mitzenmacher, 2004). Turbi-
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Bimodality of turbidite bed thicknesses

As pointed out by Talling (2001), the commonly
observed bimodality of turbidite bed thickness
distributions probably reflects the difference
between deposition from more dilute and more
dense suspensions, or the low-density and high-
density turbidity currents of Lowe (1982). The
thickness of a bed at any location depends on two
immediate factors: duration of deposition and
rate of sedimentation. It is probable that it is the
rate of sedimentation that causes the bimodality:
once it starts, deposition from high-concentration
suspensions is likely to be rapid, as reflected by
the common suppression of lamination or strati-
fication and the relatively poor sorting in thick-
bedded turbidites (Lowe, 1982; Hiscott, 1994;
Sylvester & Lowe, 2004). From a slightly different
perspective, the bimodality of bed thickness
reflects the difference between competence-dri-
ven and capacity-driven sedimentation (Hiscott,
1994; Kneller & McCaffrey, 2003). Whether thick
beds are usually related to larger originating
events or strictly reflect local depositional condi-
tions is a different and more difficult question. In
any case, it is probable that bed thickness is
controlled only in part by initial discharge
(Pirmez & Imran, 2003) and flows depositing
thick sand beds in channels can also deposit thin
beds on levées or in more distal locations.
Therefore, it is unlikely that bed thickness
distributions of turbidite systems with well-
differentiated morphologic and stratigraphic ele-
ments can be related directly to originating events
like earthquakes; rather, they probably reflect the
local depositional conditions (Talling, 2001).
Taking into account the degree of complexity of
many turbidite systems that can be observed on
seafloor images and in high-quality seismic data
(e.g. Deptuck et al., 2003), it is also unlikely that a
few numbers or curves derived from bed thick-
ness data alone can give general guidance about
depositional setting, degrees of confinement, ero-
sion, bypass and other important characteristics
of the turbidite system.

The two different types of deposition (from
high-density and low-density suspensions) can
occur probably from the same flow. Recent stud-
ies in the Marnoso-Arenacea Formation suggest
that the bimodality in bed thicknesses can be
related to a characteristic bed shape: beds that are
relatively thick in proximal settings undergo
rapid thinning towards more distal areas (Talling
et al., 2007). Any random vertical sampling line is
likely to capture fewer transitional thicknesses

compared with the laterally more extensive prox-
imal thick and distal thin zones.

An important implication of this study is that
segmented power laws and the corresponding
characteristic § exponents on exceedence prob-
ability plots cannot be explained by different
depositional processes leading to two or more
different populations. For example, it is tempt-
ing to think that, in some cases, the two
segments of the exceedence plot could be the
result of deposition from turbidity currents vs.
debris flows. If this was the case, one would
expect to see a range of curve types representing
power law mixtures, as shown in Fig. 8. There is
no reason why different bed types could not mix
in different proportions. However, there is no
indication of ‘mixed’ curve shapes in the exist-
ing data sets; all the segmented plots can only
correspond to one specific curve type of the
family of curves illustrated in Fig. 8. At the
moment, the only reasonable explanation for this
curve type is the Malinverno (1997) model for
confinement and, therefore, any claims made
about the presence of segmented power law
distributions should consider the applicability of
the assumptions and implications of this mathe-
matical representation to the data under inves-
tigation. In contrast, the lognormal mixture
model is compatible with the two populations
originating from different transport and/or depo-
sitional processes: the curve types seen on the
cumulative plots of real data (Figs 12-14) cor-
respond well to the various theoretical mixtures
of two lognormal populations (Fig. 11). This
model requires no relationship between the
population parameters and the proportion be-
tween the two groups.

How important is erosion?

Pebbly sandstone packages with abundant amal-
gamation surfaces are common in the Tarcau
Sandstone. If the erosional flows removed signi-
ficant parts of the underlying beds, the bed
thickness distribution was affected as well. A
comparison of the distribution of truncated and
non-truncated beds that start with T, (Fig. 18)
shows a discernible shift of the thick beds
affected by erosion compared with non-eroded
beds. The geometric mean values of the two
distributions are 100 cm (134 mnon-truncated
beds) and 75 cm (260 truncated beds). This
suggests that, on average, most of the bed-scale
erosion seen in the Tarcdu Sandstone is restricted
to ca 20-30% of the total bed thickness and does
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not alter the lognormal nature of the original
event bed thickness distribution.

Significance of thickness variability

It has been shown here that the Tarcdu Sandstone
bed thickness data represent a lognormal mixture
different from the one that describes the Marnoso-
Arenacea Formation. The log-transformed thin-
ner-bedded population has a relatively small
standard deviation, whereas the thick-bedded
part shows more variability (Fig. 14). A possible
cause for this is that the thin beds in the Tarcdu
Sandstone probably were deposited as levées and
turbidites on levees of modern submarine fans
have relatively uniform bed thicknesses (e.g.
Pirmez & Imran, 2003). In contrast, the thin beds
of the Marnoso-Arenacea Formation are not levée
deposits; many thin beds have been correlated
over most of the outcrop area, and they were
deposited on a basin plain (Amy & Talling, 2006).
Further studies, preferably of modern systems
where the depositional settings are clearly
known, are necessary to see whether the var-
iances of the log-transformed bed thickness data,
in conjunction with other facies characteristics,
have some general implications for the interpreta-
tion of the deposits.

Practical advantages of the lognormal model

From a reservoir characterization perspective, it
is worth noting that in most areas of research
where power law distributions are of great
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interest (e.g. the study of networks, economics,
natural hazard prediction), it is the ‘heavy tail’
that receives most of the attention, because it is
important to predict rare but huge events. How-
ever, in reservoir characterization, the very large
‘events’, if any, are often already known from
wells and seismic data. It is the subseismic scale,
in areas unpenetrated by wells, that is largely
unknown. On the other hand, very thin beds that
usually cause the deficiencies in the bed thick-
ness measurements commonly are not reservoirs
and, from this practical point of view, the diffi-
culties of measuring correctly the thinnest beds
can probably be ignored. So a range of bed
thicknesses, from a few centimetres to a few
metres, are of most interest in reservoir charac-
terization, and this range seems to be best
described by the lognormal mixture model.

Regardless of what the theoretical implications
and interpretations might be, the lognormal mix-
ture model proposed by Talling (2001) is a
relatively simple and intuitive model that offers
a better description of the data analysed here than
the power law models. Certainly, the statistical
analysis of bed thicknesses can be refined further
and other distribution models could be investi-
gated as well. However, it is important to find the
balance between the precision of the statistical
models and their applicability: more complicated
models are likely to give better fits, but they may
not be practical for description and modelling of
bed thicknesses. The lognormal mixture model
may often fail to pass the goodness-of-fit statisti-
cal tests, especially with large data sets, but this
should not preclude its use unless a better-fitting
and relatively simple, sedimentologically insight-
ful model is found.

CONCLUSIONS

1 Log-log plots and least squares fitting by
themselves are inappropriate tools for the analy-
sis of bed thickness distributions. Least squares
fitting gives a reasonable estimate of the power
law exponent, but says little about how well the
distribution fits the power law model. The asso-
ciated R? is unsuitable as a measure of goodness-
of-fit. Log—log plots and least squares fitting
should be accompanied by the assessment of
other types of diagrams (cumulative probability,
histogram of log-transformed values, q—q plots)
and the use of a measure of goodness-of-fit other
than R?, such as the chi-squared and the Kol-
mogorov—Smirnov statistics.
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2 Segmented power laws on exceedence plots
are not simple mixtures of power law distribu-
tions with arbitrary parameters. Although a
model of confinement does result in segmented
plots at the centre of the basin (Malinverno,
1997), the segmented shape of the exceedence
curve breaks down as the sampling location
moves away from the basin centre. Identifying
two or more relatively straight segments in ex-
ceedence probability plots is subjective, and
should be used in the analysis of turbidite bed
thickness data only if it is probable that the
assumptions of the Malinverno (1997) model are
satisfied.

3 The lognormal mixture model for turbidite
bed thicknesses (Talling, 2001), mainly reflecting
the differences in sedimentation rates between
high-density and low-density turbidity currents,
is a logical alternative to the power-law model.
Identifying the parameters of the component
distributions is difficult unless a detailed sedi-
mentologic description of the internal structuring
is available. It is suggested here that the expec-
tation—-maximization algorithm can be used to
estimate the parameters and thus to model such
bed thickness mixtures.

4 The bed thickness data from the Tarcau
Sandstone of the East Carpathians (Romania) are
best described by a lognormal mixture model
with two components. In contrast with the
Marnoso-Arenacea Formation, the thinner-bed-
ded population has a lower variability than the
thicker-bedded population; this could be the re-
sult of deposition of these beds on levees of sub-
marine channels.
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