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ABSTRACT 

 Detrital geochronology and thermochronology have emerged as primary methods of 

reconstructing the tectonic and surficial evolution of the Earth over geologic time. 

Technological improvements in the acquisition of detrital geo-thermochronologic data have 

resulted in a rapid increase in the quantity of published data over the past two decades, 

particularly for the mineral zircon. However, existing tools for visualizing and analyzing 

detrital geo-thermochronologic data generally lack flexibility for working with large datasets, 

hampering efforts to utilize the large quantity of available data. 

 This paper presents detritalPy, a Python-based toolset that is designed for flexibility in 

visualizing and analyzing large detrital geo-thermochronologic datasets. Any number of 

samples, or groups of samples, can be selected for plotting and/or analysis. Functionality 

includes: (1) plotting detrital age distributions using the most commonly employed 
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visualization types, (2) plotting sample locations within an interactive mapping interface, (3) 

calculating and plotting maximum depositional age, (4) creating multi-dimensional scaling 

plots, and (5) calculating inter-sample similarity and dissimilarity matrices, among other 

functions. detritalPy is implemented using a Jupyter Notebook, requires no significant coding 

expertise, and can be modified as needed to meet users’ specific requirements. It is 

anticipated that detritalPy will provide a platform for analyzing detrital geo-

thermochronologic data within a ‘Big Data’ framework, providing a much needed toolset for 

efficient utilization of ever-increasing quantities of data. 

 

Keywords 

Detrital zircon, geochronology, Python, thermochronology.  

 

INTRODUCTION 

The fields of detrital geochronology and thermochronology aim to identify the timing 

of crystallization and cooling of individual detrital mineral grains, respectively, with 

application to understanding both solid-earth (tectonic) and earth surface processes (Fedo et 

al., 2003; Reiners & Brandon, 2006; Gehrels, 2011). Technological improvements over the 

last several decades, particularly in laser ablation-inductively coupled plasma-mass 

spectrometry (LA-ICP-MS), have led to greater efficiency in collecting detrital 

geochronologic data (Gehrels, 2014), and to a lesser extent thermochronologic data (Horne et 

al., 2016). Although many detrital mineral types are used in geo-thermochronology, U-Pb 

and (U-Th)/He dating of detrital zircon (DZ) has emerged as a primary tool for constraining 

sediment provenance, refining palaeogeographic and tectonic interpretations, and 

constraining the depositional age of stratigraphic sequences (Fedo et al., 2003; Gehrels, 

2014). Termed the “DZ Revolution” (Gehrels, 2011), the number of scientific articles, 

including peer-reviewed publications and conference abstracts, published per year that 

contain the phrase “detrital zircon” in the title has increased from ~14 per year during the 

early 1990’s to nearly 600 in 2016 (Fig. 1A). During this time period, both the number of 

grain analyses per sample and the total number of samples per study has also increased (Fig. 

1A), resulting in an ever-expanding number of geo-thermochronologic data points. 
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How many individual DZ geochronologic analyses have been collected within the 

past 20 years? Voice et al. (2011) and Puetz et al. (2018) compiled ~200,000 and ~260,000 

individual DZ U-Pb ages, respectively, but these compilations are likely a small fraction of 

the total that has been collected. Back-of-the-envelope calculations suggest a conservative 

estimate of several million or more published U-Pb analyses of DZ alone (Fig. 1B). This is 

likely a conservative estimate as not all articles that publish detrital geochronologic data 

contain the exact phrase “detrital zircon” in their title, and this estimate does not include 

unpublished data. The trend towards a large-n sampling strategy (Pullen et al., 2014; Daniels 

et al., 2017) suggests that the quantity of detrital geochronologic data will continue to 

increase at a rapid pace. Although detrital thermochronologic datasets are typically smaller 

than their geochronologic counterparts, as a result of greater effort and expense of data 

collection, ongoing advances in He-dating using laser ablation shows promise in increasing 

the future quantity of detrital thermochronometric data (Horne et al., 2016). 

The proliferation of detrital geo-thermochronologic data provides an opportunity for 

researchers to leverage published data in interpreting their own datasets (Gehrels, 2014). Yet 

efficient management and analysis of such quantities of data can make even common tasks 

difficult, such as (1) selecting samples for comparison, (2) combining samples into groups, 

and (3) assessing the similarity and/or dissimilarity between samples or groups of samples 

(e.g., multi-dimensional scaling; Vermeesch, 2013). A number of analytical and visualization 

tools have been developed for working with detrital geo-thermochronologic data, including 

Isoplot (Ludwig, 2008), Excel-based macros from the Arizona LaserChron Center, DZStats 

(Saylor & Sundell, 2016), DZMix (Sundell & Saylor, 2017), and a number of tools developed 

by Pieter Vermeesch and his colleagues including Density Plotter (Vermeesch, 2012), 

MuDiSc (Vermeesch, 2013), and the R provenance package (Vermeesch et al., 2016). 

 detritalPy, a Python 3-based toolset presented herein, supplements these existing tools 

by allowing efficient visualization and analysis of large detrital geochronologic and 

thermochronologic datasets. The following sections provide an overview of the data format 

required by detritalPy and an explanation of its visualization and analysis tools. Additional 

explanation is provided in the detritalPy manual (see supporting information) and within 

commented lines within the Python code itself (https://github.com/grsharman/detritalPy). 

Example datasets from Sharman et al. (2013), Sharman et al. (2015), and Thompson et al. 

(2017) are used to illustrate detritalPy functions. 
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DATA STRUCTURE 

detritalPy requires input data to be structured by sample and detrital analysis (Fig. 2). 

Samples must contain a unique alphanumeric identifier (e.g., “11-Escanilla”; Fig. 2) and each 

sample must have at least one detrital analysis. The default data input format is a Microsoft 

Excel spreadsheet with two worksheets. (1) A “Samples” worksheet contains a row for each 

unique sample in the dataset. This worksheet can optionally contain other sample information 

(e.g., latitude and longitude coordinates). (2) An “ZrUPb” worksheet contains a row for each 

unique detrital analysis in the dataset, in this case zircon U-Pb and (U-Th)/He ages. Each 

analysis must be linked with a sample by its unique sample identifier (i.e., “11-Escanilla”, 

Fig. 2). Each analysis must have at least one detrital age with an associated analytical 

uncertainty (1- or 2-sigma). If multiple detrital analyses are from the same grain (e.g., rim 

and core analyses), then a unique grain identifier can be used (e.g., “7_Guaso_81”; Fig. 2B). 

The “ZrUPb” worksheet can optionally contain other information related to the detrital 

analysis (e.g., U concentration or Th/U). 

 

DATA LOADING and SAMPLE SELECTION 

 Data can be loaded into detritalPy by simply specifying the file pathway and file name 

and extension (Fig. 3A). If data is present in multiple spreadsheets, these can be imported 

simultaneously and will be merged together, provided that there is no duplication of data and 

that both spreadsheets use the same column heading names. A histogram of the number of 

grains per sample can be optionally plotted (Fig. 3A). 

 

Samples can be selected for plotting and/or analysis via one of two options: (1) one or 

more individual samples can be specified by listing each unique sample identifier in an array, 

(2) one or more groups of samples can be specified by listing the sample identifiers that make 

up each group in an array, followed by an alphanumeric name for the group, all contained 

within a tuple data structure (Fig. 3B). 
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DETRITALPY FUNCTIONS 

 The visualization and analysis functions included with detritalPy are described below. 

All functions can be modified to fit the user’s requirements by modifying the source code 

within the included detritalFuncs library. Additional information for each of the following 

functions is provided within the detritalPy manual (see supporting information) and within 

commented lines within the Python code itself. 

 

Plot detrital age distributions 

 Detrital age distributions can be plotted for individual samples or sample groups using 

the most popular visualization types, including cumulative distributions, relative probability 

distributions, histograms, and pie diagrams (Fig. 4). There is no limit to the number of 

samples or sample groups that can be plotted. The plot is divided into two parts. (1) An upper 

subplot contains superimposed cumulative distributions for each sample or sample group. (2) 

One or more lower subplot(s) includes relative probability distributions, histograms, and pie 

diagrams, if selected to be plotted. Each sample or sample group will be plotted in the order 

that the unique sample identifiers are listed. If the ‘separateSubplots’ variable is set to True, 

then each sample or sample group will be plotted in a separate subplot (Fig. 5). The y-axes of 

the subplots will have the same scale (i.e., normalized) if the ‘normPlots’ variable equals 

True (Fig. 5). If the ‘separateSubplots’ variable equals False, then each normalized 

distribution (for a sample or sample group) will be vertically stacked within a single subplot 

(Fig. 5). However, histograms and pie diagrams cannot be plotted if ‘separateSubplots’ 

equals False. 

Two types of relative probability distributions can be plotted. Probability density plots 

(PDPs) are probability distributions constructed from summing a Gaussian distribution for 

each analysis and normalizing the distribution such that its integral equals 1, where the mean 

and standard deviation of each summed Gaussian distribution is equal to the age and 1σ 

analytical uncertainty of the analysis (Vermeesch, 2012). Kernal density estimations (KDEs) 

are constructed in a similar manner to PDPs, except that a bandwidth is used for the standard 

deviation of each Gaussian, rather than the 1σ analytical uncertainty (Vermeesch, 2012). 

Although the PDP lacks a solid theoretical foundation and has been criticized as a 

visualization approach for detrital age distributions (Vermeesch, 2012, 2018), this option is 
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included as the PDP continues to be widely used by the detrital geochronology community. 

Cumulative PDPs and/or KDEs can be also be plotted (e.g., Fig. 4B). 

Three options for colouring relative probability distributions have been included: (1) 

solid colouration that fills the area under the age distribution and that matches the line colour 

of the cumulative distribution, if selected for plotting (e.g., Fig. 6), (2) age-dependent 

colouration that fills the area under the relative age distribution and that correspond to user-

defined detrital age categories (e.g., Fig. 4F), and (3) vertical, coloured bars that correspond 

to user-defined age categories. The user-specified age categories and colours can also be used 

to plot pie diagrams (Fig. 4F). 

 

Plot rim age versus core age 

 Some detrital grains contain younger mineral growth (i.e., a rim) over an older core. 

Rim versus core age relationships can be plotted provided that (1) grains are identified with a 

unique alphanumeric label (e.g., “7_Guaso_81”), and (2) “Rim” and “Core” designations are 

included in a “RimCore” column (Fig. 2B). Figure 7 presents an example plot of rim versus 

core age from the Ainsa Basin of the Spanish Pyrenees (data from Thompson et al., 2017). 

Data points are automatically coloured according to either the sample or sample group, and 

error bars can be plotted, optionally. 

Plot detrital age distributions in comparison to another variable (e.g., Th/U) 

 Geochemical attributes of detrital minerals can provide additional insight into 

sedimentary provenance and/or the petrogenesis of source rocks (Barth et al., 2013; 

Malkowski & Hampton, 2014; Colgan & Stanley, 2015). For detrital zircon, concentrations 

of U and Th are routinely measured in LA-ICP-MS. Increasingly, the abundances of other 

trace and rare-earth elements and Hf isotopes are also analyzed (Gehrels, 2014). Detrital U-

Pb ages can be plotted in comparison to any other numeric variable in the “ZrUPb” 

worksheet (e.g., the concentration of U or ratio of Th to U; Fig. 2B) to assess changes in this 

variable with respect to the age of the detrital mineral (Fig. 8). Error bars can be plotted 

optionally; error can either be specified as a percentage or as the column heading that 

contains the variable error data. The option is also provided to plot a moving average of a 

specified window size (Fig. 8). 
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Plot detrital age populations as a bar graph 

 Bar graphs can provide a useful visualization of how detrital ages vary between 

samples or sample groups (Sharman et al., 2015; their Fig. 7), with the caveat that such plots 

involve subjective selection of bin boundaries that may over-simplify complex age 

distributions. detritalPy allows age proportions to be plotted as one or more bar graphs, using 

user-specified age categories and colours (Fig. 9). If plotting sample groups, setting the 

variable ‘separateGroups’ to True results in plot(s) with the age proportions for individual 

samples in each group (Fig. 9B). Otherwise, the proportions will reflect all analyses within 

each group (Fig. 9C). 

 

Plot sample locations on an interactive map 

 Samples with latitude and longitude coordinates can be plotted on an interactive map, 

provided that the folium library has been installed (https://github.com/python-

visualization/folium; Fig. 10). A number of basemap options are available and can be 

specified through the variable ‘mapType’. Age distributions pop-ups (e.g., PDP or KDE) can 

be enabled and viewed interactively by clicking on each sample. Sample locations, including 

the unique sample identifier and an optional descriptor (e.g., the ‘Unit’ category; Fig. 2A), 

can also be exported as a Google Earth kml file. 

 

Plot and export maximum depositional age (MDA) calculations 

 The youngest DZ U-Pb ages provide an estimate of the maximum depositional age 

(MDA) of a detrital sample (Fedo et al., 2003; Dickinson & Geherls., 2009). An automated 

approach is provided to calculating the MDA of one or more sample(s) or sample group(s) 

using three ad hoc metrics used by Dickinson & Gehrels (2009). (1) The youngest single 

grain, YSG, assigns the MDA as the youngest detrital analysis (Fig. 11). The YSG is defined 

by sorting all analyses by their U-Pb age plus 1σ uncertainty, and selecting the first analysis. 

Thus it is possible to have a younger, but less precise, age than the YSG as defined herein. (2) 

The youngest cluster of 2 or more ages with overlapping 1σ uncertainties, YC1σ(2+), has the 

advantage of not relying on a single analysis that could be affected by lead loss or other 

analytical problems (Dickinson & Gehrels, 2009). The YC1σ(2+) is defined by sorting all 
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analyses by their U-Pb age plus 1σ uncertainty, and identifying the youngest cluster of 

analyses with overlapping 1σ error (Fig. 11). (3) The youngest cluster of 3 or more ages with 

overlapping 2σ uncertainties, YC2σ(3+), provides a more conservative, but typically older, 

estimate of the MDA than the other two metrics (Dickinson & Gehrels, 2009). The YC2σ(3+) 

is defined by sorting all analyses by their U-Pb age plus 2σ uncertainty, and identifying the 

youngest cluster of 3 or more analyses with overlapping 2σ error (Fig. 11). A spreadsheet 

with all MDA calculation results is exported automatically. 

 

 The MDA calculations can be optionally plotted for each sample or sample group 

selected (Fig. 11). Only the grain ages that are used in at least one of the three MDA 

calculations will be included. Analyses can be arranged by their mean age, mean age plus 1-

sigma analytical uncertainty, or mean age plus 2-sigma analytical uncertainty. Additional plot 

parameters can be used to change the appearance of the plot, including its dimensions, the 

width of the bars, and colours to use for the different MDA calculations. 

 

Multi-dimensional scaling 

 Multi-dimensional scaling (MDS) has become a popular approach for visual 

assessment of the degree of similarity and dissimilarity between detrital geochronologic 

samples (Vermeesch, 2013; Saylor et al., 2017). MDS plots for samples or sample groups can 

be created in detritalPy using the sklearn library with the option for either metric or non-

metric MDS (Fig. 12). Following Vermeesch (2013) and Saylor et al. (2017), MDS 

calculations can be based on the maximum separation between cumulative distribution 

functions (CDF) (Kolgomorov-Smirnov Dmax) or the sum of the maximum differences 

between two CDFs (i.e., CDF1-CDF2 and CDF2-CDF1; Kupier Vmax). The option is provided 

to plot data points as pie diagrams, using user-specified age categories and colours. 

Visualizing MDS plots using pie diagrams can help with interpreting the spatial distribution 

of samples on an MDS plot (Fig. 12). 
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(U-Th)/He vs U-Pb age “double dating” plot 

 Grains with both U-Pb crystallization and (U-Th)/He cooling ages can be plotted 

against each other in a ‘double dating’ plot (Thompson et al., 2017). The main portion of the 

plot contains a scatter plot, with gray shading within the region where the cooling age is older 

than the crystallization age (Fig. 13). Separate subplots on the x- and y-axis show the relative 

probability distribution (PDP and/or KDE) of the U-Pb and (U-Th)/He age distributions, 

respectively (Fig. 13). Histograms can be plotted, optionally. 

 

Export sample comparison matrices as a CSV file 

 A number of metrics have been proposed to evaluate the similarity or dissimilarity 

between detrital age distributions (Saylor & Sundell, 2016; and references within), although 

the use of some metrics (e.g., likeness, cross-correlation) has recently been discouraged 

(Vermeesch, 2018). Sample comparison matrices for samples or sample groups can be 

exported to a CSV file, including similarity, likeness, the Kolgomorov-Smirnov statistic Dmax 

and p-value, the Kuiper statistic Vmax, and the cross-correlation (r2) coefficient of either the 

PDP or KDE. Similarity, likeness, and r2 coefficient values are based on selection of either 

the PDP or KDE distribution, and when based upon the KDE, will depend on choice of a 

bandwidth. 

 

Export detrital age distributions as a CSV file 

 Raw detrital age distributions (either cumulative or relative) can be exported as a CSV 

file. The age range and discretization interval can be specified. If the variable ‘normalize’ 

equals True, the distribution(s) will be forced to sum to 1. Exported age distributions can be 

used as inputs for more advanced analytical procedures (e.g., sediment unmixing; Sharman & 

Johnstone, 2017). 
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Export ages and errors in tabular format as a CSV file 

 To promote compatibility with other software, detritalPy includes the option to export 

a CSV file containing U-Pb ages and 1σ uncertainties for any number of samples or sample 

groups. U-Pb ages are automatically sorted from youngest to oldest, and listed in adjacent 

columns, the format required by many existing tools (e.g., Arizona LaserChron Center Excel 

worksheets). 

 

DISCUSSION 

KDE Bandwidth Selection 

Selection of an appropriate KDE bandwidth is important for avoiding over-smoothing 

or under-smoothing detrital age distributions (Vermeesch, 2012; Saylor & Sundell, 2016). 

detritalPy offers three options for KDE bandwidth selection. The bandwidth can be specified 

by the user in units of Myr. Alternatively, the bandwidth can be automatically selected by an 

algorithm that attempts to select an optimized value (Shimazaki & Shinomoto, 2010) using 

either a fixed or variable bandwidth (Fig. 14), as implemented through the adaptivekde 

library (https://pypi.python.org/pypi/adaptivekde). 

To consider the influence of KDE bandwidth selection on the appearance of detrital 

age distributions, two end-member cases are considered: a single sample from the Morrison 

Formation of central Colorado (149 analyses; Sharman et al., in press) and a large 

compilation of 1,308 samples (120,968 analyses) that are mostly from North American 

continent (Fig. 14). Application of the Shimazaki and Shinomoto (2010) algorithm to the 

single sample yields an optimized, fixed bandwidth of 17.8 Myr. This bandwidth selection 

appears to yield an acceptable match with the histogram over much of the age range of the 

detrital analyses, but over-smooths the youngest, Jurassic age peak (Fig. 14A). Use of a 

narrower bandwidth (e.g., 5 Myr) results in better reproduction of the Jurassic age peak, and 

greater similarity to the PDP, but appears to under-smooth the older Palaeozoic and 

Proterozoic age peaks (Fig. 14A). Although the optimized, variable bandwidth (Shimazaki & 

Shinomoto, 2010) is able to better reproduce the precision of the young, Jurassic peak, it 

appears to over-smooth the older age components. For the large data compilation, the 

differences in appearance between the PDP and different KDE bandwidths are less than with 

the single sample (Fig. 14B). The optimized, fixed bandwidth (2.1 Myr) yields a result that 
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closely resembles the PDP, 5 Myr bandwidth, and optimized, variable bandwidth plots (Fig. 

14B). However, the 10 Myr and 20 Myr bandwidths appear to over-smooth the Mesozoic-

Cenozoic age populations (Fig. 14B). 

It is suggested here that the selection of a KDE bandwidth, whether user-defined or 

based on an optimized routine (Botev et al., 2010; Shimazaki & Shinomoto, 2010), will 

ultimately depend upon the nature of the age distributions themselves and the intended 

purpose of the display, with the decision having the greatest impact on plotted distributions 

with low numbers of analyses. Plots comprised of a relatively small number of detrital 

analyses may typically require larger bandwidths to avoid under-smoothing regions of sparse 

data while also tending to over-smooth young, precise age peaks (Fig. 14A). This issue may 

be partially alleviated by plotting young and old detrital analyses separately, using different 

bandwidths for each (Sharman et al., in press). Plots comprised of large numbers of analyses, 

however, may benefit from selection of a smaller bandwidth (Fig. 14B). Note that the choice 

of a KDE bandwidth has limited influence on the appearance of the cumulative (summed) 

KDE relative to the significant impact on the appearance of the KDE (Fig. 14). 

 

Strengths of detritalPy 

Although intended as a complement to rather than replacement of existing tools, 

detritalPy has a number of strengths that allow for efficient visualization and analysis of large 

detrital geo-thermochronologic datasets: 

(1) The code is executed in the open-source (Python Software Foundation License) 

Python 3 language and is implemented using a user-friendly Jupyter Notebook interface 

(Perez and Granger, 2007; Kluyver et al., 2016). Thus, detritalPy does not require the use of 

proprietary software (e.g., MathWorks Matlab). Although no significant coding knowledge is 

required, users have the option of modifying the code to create user-customized functions and 

plots, which can be difficult with some existing tools that utilize a graphical user interface. 

(2) All detritalPy functions are compatible with an unlimited number of samples, or 

sample groups, and samples can be selected without manipulation of data in spreadsheets. 

Samples can be selected via simple reference to the unique sample identifier (e.g., ‘Sample 

B’), and changes can be made on-the-fly. Thus detritalPy eliminates the need to manually 
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combine or organize data prior to plotting or analysis, beyond initial data organization (Fig. 

2), helping to eliminate duplication of data in separate spreadsheets. 

(3) Plotting and analysis functions are designed to allow maximum user flexibility in 

controlling the appearance and types of plots, following the most commonly used 

visualization and analytical approaches (Vermeech, 2012; 2013; Saylor & Sundell, 2016). 

Jupyter Notebooks are ideal for exploratory data analysis. Once the desired graphs have been 

created, plots can be can be exported in a vector-friendly format, requiring little modification 

for publication-quality figures. 

(4) Data can be exported in the common format used by the majority of existing 

analytical and visualization tools, for use in other published software. 

 

‘Big Data’ in Detrital Geochronology 

 The proliferation of detrital geo-thermochronologic data within the last 20 years (Fig. 

1) provides an opportunity for analysis within a ‘Big Data’ framework (Vermeesch & 

Garzanti, 2015). Yet development of an efficient means of visualizing and analyzing large 

datasets remains a critical need in the detrital geo-thermochronologic community (Geherls, 

2014). For example, the ability to easily create sample groups within detritalPy will facilitate 

construction of reference curves (Gehrels et al., 1995; Kimbrough et al., 2015) that can be 

compared with the magmatic and/or metamorphic history of known basement terranes 

(Dickinson & Gehrels, 2009) or with other detrital samples (Sharman et al., 2017). The 

ability to quickly visualize and analyze related detrital geochronological and geochemical 

data also has relevance for characterization of source terranes, such as the magmatic flux of 

volcanic arc terranes (Ducea, 2001; Sharman et al., 2015; Malkowski et al., 2017). 

 detritalPy also provides improved functionality for querying and exploring geo-

thermochronologic data, particularly when combined with existing data repositories (e.g., the 

Geochron database; www.geochron.org). The ability to plot sample locations on an 

interactive, zoomable map and export them to Google Earth allows rapid identification of 

geographically related samples (Fig. 10). Relationships between samples or sample groups 

can be quickly assessed both visually and quantitatively (e.g., Figs 6 and 12). For instance, 

plotting samples or sample groups in stratigraphic succession (Gehrels et al., 2011) has 

potential for assessing the degree of multi-generational sediment recycling over time 
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(Thomas, 2011). Because detritalPy is open-source, its functions can be modified or added to, 

as needed. It is anticipated that future development of new visualization and analytical tools 

within the detritalPy framework will address the evolving needs of the detrital geo-

thermochronologic community. 

 

CONCLUSIONS 

 detritalPy, a Python-based approach to visualizing and analyzing large detrital geo-

thermochron datasets, addresses a critical need for an efficient means of processing the 

rapidly expanding quantity of detrital mineral isotopic and geochemical data. detritalPy is 

implemented through a user-friendly Jupyter Notebook interface and requires no significant 

coding expertise. However, the existing code can be modified to allow for user-customized 

plots and analysis. 

An unlimited number of samples can be either plotted individually or within groups. 

Functionality includes (1) plotting detrital U-Pb age distributions using the most commonly 

employed visualization types, (2) plotting rim age versus core age, (3) comparing detrital age 

distributions to another variable (e.g., Th/U), (4) plotting age group proportions as a bar 

graph, (5) plotting sample locations on an interactive, zoomable map and exporting a Google 

Earth kml file, (6) calculating and visualizing maximum depositional ages, (7) multi-

dimensional scaling, (8) calculation of similarity and dissimilarity metrics (e.g., similarity, 

likeness, Kolgomorov-Smirnov statistic), and (9) exporting U-Pb age and error data and age 

distributions as CSV files. 

 detritalPy has a number of advantages over existing tools, including not requiring 

proprietary software, offering flexibility in how data are plotted and analyzed, and 

eliminating the need to manipulate data within spreadsheets to select which samples or 

groups of samples to plot. Furthermore, data can be easily exported from detritalPy in the 

common format required by most existing data visualization and analytical tools. It is 

expected that detritalPy will provide an important toolset for analyzing detrital 

geochronologic and thermochronologic data within a ‘Big Data’ framework. 
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FIGURE CAPTIONS 

Figure 1. (A) The number of published studies per year, including peer-reviewed articles and 

conference abstracts, that contain the phrase “detrital zircon” in the title (based on a GeoRef 

database search, August 2017; see also Gehrels, 2014, fig. 1). Blue and red lines demarcate 

the average number of samples and analyses per sample, respectively, for published studies 

from each calendar year (2009 data and earlier from Voice et al., 2011; 2010 data and later 

years from an unpublished compilation of ~120,000 DZ U-Pb ages, mostly from North 

America). (B) An approximate estimate of the total (cumulative) number of published DZ U-

Pb analyses from 1990-2016. This estimate was derived from multiplying the number of 

published studies by the number of samples and average number of analyses per sample for 

each calendar year (part a). 

 

Figure 2. Example of the default data structure used by detritalPy. (A) A “Samples” 

worksheet contains a required “Sample_ID” column and additional optional columns. (B) An 

“ZrUPb” worksheet contains required “Sample_ID”, “BestAge”, and “BestAge_err” 

columns. Additional columns are required for some plotting and analysis functions (e.g., 

“U_ppm”). Example data is included as supporting information. 

 

Figure 3. (A) Example code that illustrates how to import required libraries, load data in two 

separate Excel files, and plot a histogram of the distribution of analyses per sample. (B) 

Example code that illustrates how to select one or more individual sample(s) (above) or 

sample group(s) (below) for plotting and analysis. 

 

Figure 4. Examples of plotted detrital age distributions. (A) Cumulative distribution function 

binned at 1 Myr increments. The notation N=(X, Y/Z) indicates the number of samples (X), 

the number of analyses visible in the plotted age range (Y), and the total number of analyses 

(Z). (B) Cumulative probability density plot (CPDP). (C) Histogram with 5 Myr bins. (D) 

Probability density plot (PDP). (E) Kernal density estimate (KDE) using a 3 Myr bandwidth 

(b.w.). (F) A combination plot with a superimposed histogram, PDP, and KDE. The PDP and 
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pie diagram are coloured according to user-defined age categories, from Sharman et al. 

(2015). 

 

Figure 5. Three options for plotting relative probability distributions (PDP or KDE). (A) 

Equally sized subplots that are allowed to have different y-axis scales. (B) Equally sized 

subplots that all have the same y-axis scale (i.e., normalized). (C) Distributions are stacked on 

top of each other and all have the same y-axis scale (i.e., normalized). 

 

Figure 6. Detrital age distributions shown as a CKDEs (top) and KDEs (bottom) for four 

sample groups (using a bandwidth of 1.5 Myr). CKDE and KDE are coloured by sample 

group, allowing easy visual comparison of cumulative and relative age distributions. 

 

Figure 7. Illustration of rim age versus core age relationships (data from Thompson et al., 

2017). Data symbols are coloured by sample. 

 

Figure 8. Illustration of plotting detrital U-Pb age distributions versus another analysis 

variable (Th to U ratio) for the Point of Rocks Sandstone and Butano Sandstone sample 

groups (see Fig. 7). The red line depicts a 15 point moving average across Th/U data points. 

Note elevated Th/U ratios in Jurassic zircon ages from the Butano Sandstone. 

 

Figure 9. Bar graphs showing the relative proportions of user specified age categories (see 

Fig. 5). (A) Individual samples. (B) Individual samples plotted by sample group. (C) 

Combined data for sample groups. See Figure 7 for the Point of Rocks (POR) Sandstone and 

Butano Sandstone sample groups. 
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Figure 10. Examples of the Butano Sandstone (red) and Point of Rocks Sandstone (green) 

sample locations plotted on an interactive map (ESRI ‘World_Topo_Map’). (A) Wide view 

showing all 8 samples coloured according to group. Clicking on a sample results in a pop-up 

window with the sample name. (B) Zoomed in view showing detail around sample BUT-5. 

 

Figure 11. Example of maximum depositional age (MDA) calculations for sample POR-2. 

See text for details. 

 

Figure 12. Multi-dimensional scaling (MDS) plots. Axes are dimensionless Dmax distances 

(see Vermeesch, 2013 for additional explanation). (A) Individual samples. (B) Sample 

groups. 

 

Figure 13. (U-Th)/He versus U-Pb ‘double dating’ plot. PDPs are shown in subplots to the 

bottom and right of the scatterplot. Data from Thompson et al., 2017. 

 

Figure 14. Illustration of the influence of KDE bandwidth selection on plot appearance. (A) 

Single sample from the Morrison Formation of central Colorado (Sharman et al., in press). 

(B) Large data compilation of samples mostly from North America.  
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