A model of submarine channel-levee evolution based on channel trajectories: Implications for stratigraphic architecture

Abstract

Channel-levee systems are frequently interpreted as having a long history of cut-and-fill by channel-shaped features of different scales. Results from a simple geometric model based on a centerline migration algorithm combined with a vertical channel trajectory show that an incising-to-aggrading trajectory of a single channel can produce realistic morphologies similar to systems observed on the seafloor and subsurface, including features such as a basal erosional surface, coeval inner and outer levees, internal erosional boundaries, and terraces draped by inner levee deposits. Channel migration results in composite erosional surfaces that are distinct from topographic surfaces, and their formation does not require larger than usual erosional flows. Many submarine channels interpreted as underfit were probably carved by flows similar to the ones that eroded and deposited the entire channel system. We suggest that the features of most submarine channel-levee systems do not require large temporal variations in flow magnitude but can be explained by a simpler model whereby incision, migration and aggradation of a single channel form over time results in an apparently complex system.

Cite
Marine and Petroleum Geology 28, p. 716-727
Date
created with 'Hugo finite' theme by M. Brinkmann