These are animations that accompany our 2015 article on the stratigraphy of salt-withdrawal basins on the slope (Sylvester, Z., Cantelli, A., and Pirmez, C., 2015, Stratigraphic evolution of intraslope minibasins: Insights from surface-based model: AAPG Bulletin, v. 99, no. 6, p. 1099–1129). We have used a simple model that investigates the interplay between subsidence and sedimentation and helps in the understanding of how stratal termination patterns relate to variations in sediment input and basin subsidence.
Read More…
All clastic sediments are subject to compaction (and reduction of porosity) as the result of increasingly tighter packing of grains under a thickening overburden. Decompaction - the estimation of the decompacted thickness of a rock column - is an important part of subsidence (or geohistory) analysis. The following exercise is loosely based on the excellent basin analysis textbook by Allen & Allen (2013), especially their Appendix 56.
Import stuff import numpy as np import matplotlib.
Read More…
If someone showed a photograph of the famous Cuernos massif (Torres del Paine National Park, Chile) like the one below, it would be - probably, hopefully - obvious to everybody that something is wrong with the picture. Our eyes and brains have seen enough mountain scenery that we intuitively know how steep is ‘steep’ in alpine landscapes. The peaks in this photograph just look too extreme, too high if one takes into account their lateral extent.
Read More…